Approximate Homogeneous Graph Summarization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Homogeneous Graph Summarization

Graph patterns are able to represent the complex structural relations among objects in many applications in various domains. The objective of graph summarization is to obtain a concise representation of a single large graph, which is interpretable and suitable for analysis. A good summary can reveal the hidden relationships between nodes in a graph. The key issue is how to construct a high-qual...

متن کامل

Graph Hybrid Summarization

One solution to process and analysis of massive graphs is summarization. Generating a high quality summary is the main challenge of graph summarization. In the aims of generating a summary with a better quality for a given attributed graph, both structural and attribute similarities must be considered. There are two measures named density and entropy to evaluate the quality of structural and at...

متن کامل

GraSS: Graph Structure Summarization

Large graph databases are commonly collected and analyzed in numerous domains. For reasons related to either space efficiency or for privacy protection (e.g., in the case of social network graphs), it sometimes makes sense to replace the original graph with a summary, which removes certain details about the original graph topology. However, this summarization process leaves the database owner w...

متن کامل

Probabilistic Graph Summarization

We study group-summarization of probabilistic graphs that naturally arise in social networks, semistructured data, and other applications. Our proposed framework groups the nodes and the edges of the graph based on a user selected set of node attributes. We present methods to compute useful graph aggregates without the need to create all of the possible graph-instances of the original probabili...

متن کامل

Interactive Graph Summarization

Graphs are widely used to model real-world objects and their relationships, and large graph data sets are common in many application domains. To understand the underlying characteristics of large graphs, graph summarization techniques are critical. Existing graph summarization methods are mostly statistical (studying statistics such as degree distributions, hop-plots, and clustering coefficient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Information Processing

سال: 2012

ISSN: 1882-6652

DOI: 10.2197/ipsjjip.20.77